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ABSTRACT 

The chiral SU(4) x SU(4) symmetry breaking of the hamiltonian is 

investigated assuming the symmetry breaking part of the hamiltonian 

belongs to a single (4, z) + (z, 4) representation of SU(4) x SU(4). We 

classify the simplest possibilities, identify each with critical orbits 

in the space of the (4, T) + (z, 4) representation and indicate their 

relations to quark masses. The divergences of the axial vector currents 

are discussed and their matrix elements are used to obtain relations among 

masses and coupling constants involving the recently discovered charmed 

pseudoscalar mesons. Finally, it is pointed out that soft kaon theorems 

can be obtained for certain processes involving charmed particles 

using kaon PCAC due to the relative smallness of the kaon mass. In 

this case the symmetry breaking is approximately on the critical orbit 

corresponding to the subgroup SU(3 1 x SU(3) x U(1 Jd. 
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I. INTRODUCTION 

With the discovery of new particles’ carrying another quantum 

number, charm, it is quite natural to extend Gell-Mann’s algebra of 

currents2 from chiral SU(3) x SU(3) to chiral SU(4) x SU(4). Indeed 

several authors3 have already considered various aspects of chiral 

SU(4) x SU(4) even prior to the discovery of charm. 

Here we shall assume the correctness of the chiral SU(4) x SU(4) 

algebra for the equal-time commutars of the 15 vector charge operators 

Fi and the 15 axial vector charge operators Fi5 and explore the chiral 

SU(4) x STJ(4) symmetry breaking of the hamiltonian density. Some of 

our work is a direct generalization of the previous investigations 4,5 

of the behavior of the hamiltonian density under chiral SU(3) x SU(3). 

In particular, we shall assume that the hamiltonian density is of the 

form H = Ho + H’ where Ho is SU(4) x SU(4) symmetric (but not 

U(4) x U(4) invariant) while H’ belongs to a single (4, ;i) + (z’, 4) 

representation of chiral SU(4) x SU(4). There are several ways in which 

the SU(4) x SU(4) symmetry of H can be broken leaving only an 

SU(2) x U(i) x U(1) invariance corresponding to isospin, strangeness 

and charm conservation. That is, there are hierarchies of subgroups 

of SU(4) x SU(4), each containing SU(2) x U(1) x U(1). If any of these 

subgroups were exact symmetries of H’ then H’ would lie on a critical 

orbit 6. m the 32-dimensional space of the (4, 3) + (z, 4) representation 

as discussed in Section II. 
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In the real world these various subgroups, in particular applications, 

are quite useful approximate symmetries of H; c.f., the SU(3) and 

SU(2) x SU(2) subgroups of SU(3) x SU(3). In the context of the standard 
3 

four quark model’ H’ being on a critical orbit corresponds to special 

values of the quark masses since these parameters determine the direction 

of H’ in the sapce of the (;I, 4) + (q, 4) representation. 
6 

Approximate symmetry under the subgroup SU(4)d[ the superscript 

denotes the diagonal SU(4) subgroup of SU(4) X SU(4)) we shall assume 

is realized in nature by the approximate invariance of the vacuum as 

evidenced by the existence of SU(4) multiple& of particles. For example, 

the 15 pseudoscalar mesons7 n, K, n, n’, nc, D and F at least 

approximately seem to belong to the adjoint representation of SU(4)d. 

Of course, the smaller subgroup SU(3)d is no doubt a much better 

approximate symmetry and the breaking of the still smaller subgroup 

SUM (isospin) is entirely negligible for our purposes. 

However, in the case of the chiral subgroups of SU(4) xSU(4); 

e.g., chiral SU(3) x SU(3) end chirsl SU(2) X SU(2), we shall assume the 

symmetry is realized in nature in the Nambu-Goldstone manner. That 

is, by the appearance of approximately massless pseudoscalar mesons 

rather than parity-doubled multiplets of particles. Clearly chiral 

SU(2) x SU(2) is a better approximate symmetry than chiral SU(3) x SU(3) 

as indicated by MTT << MK. Nevertheless, as discussed below, there 

are cases where approximate chiral SU(3) x SU(3) symmetry is useful 

due to the fact that MK << MD or MF. 
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Thus we adopt exactly the same point of view regarding the realization 

of approximate symmetries in the real world that was emphasized in reference 4. 

In Section III we consider the divergences of the axial vector currents 

which are determined by H’. By taking the matrix elements of these 

current divergences between the vacuum and the pseudoscalar meson 

states we are able to obtain new relations among masses and coupling 

constants involving the charmed particles including a particularly 

interesting rather stringent inequality between the leptonic decay 

constants of the D and F mesons which can be tested experimentally. 

We also estimate the values of the parameters occuring in H’ which are, 

in the context of the quark model, the quark masses. 

Finally in Section IV we exploit the approximate invariance of H’ 

under the chiral SU(3) x SU(3) subgroup of SU(4)x SU(4). It is pointed 

out that in certain processes involving the rather heavy charmed particles 

soft kaon theorems can be obtained using kaon PCAC since the kaon 

mass is relatively small. As oneexample of the use of kaon PCAC we 

consider the semileptonic decay of the D meson D - K + P + v P in the 

soft kaon limit thus obtaining a relation analogous to the soft pion theorem 

obtained by Callan and Treiman8 for the semileptonic decay of the K meson 

K+rr+P+v 
P’ 

One might expect this new soft kaon theorem to be valid 

to the order of (NK/MD)L just as the Callan-Treimsn soft pion theorem 

should be good to the order of (Mr/MK)2. 
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II. SU(4) x SU(4) DIRECTIONS OF BREAKING 

Starting from the simplest generalization of the (3,?) 8) (?,3) model,4’5 the 

strong hamiltonian density H is assumed to be approximately symmetric 

under the group chiral SU(4) x SU(4); i.e., 

H = Ho+H’ 

where Ho is symmetric under SU(4) x SU(4), but not U(4) x U(4). The 

symmetry breaking term H’is assumed to belong (at least approximately) 

to the (4, 2) @(z, 4) representation of SU(4) x SU(4). Let us recall that 

the real 32-dimensional representation space G32 of (4, z)@ (3, 4) can 

be realized as the complex 16-dimensional vector space of all 4 x 4 

matrices M with complex coefficients. The action of the element (U, V) 

of SU(4) x SU(4) on M is defined by 

More generally, we shall denote by ui and vi (i = 0, 1, . . . , 15) the 16 

scalar and 16 pseudoscalar components of the element (U, V). We then 

have the following commutation relations with the generators Fi and F.5 
1 

of SU(4) x SU(4): 

[ Fi, ujl = ifijkuk 

[F., v.1 = if..v 
1 3 yk k 

(2.1) 

(2.2) 

(2.3) 

(2.4) 



-7- FERMILAB-Pub-77/ 78-THY 

[ Fi5, ujl = -idijkvk 

[ Fi5, vjl = idijkuk . 

(2.5) 

(2. 6) 

The f.. and d.. for SU(4) have been tabulated by Dicus and Mathur.3 
1Jk uk 

Therefore H’can be written in the form 

H’= cu 
00 + %3% + c15u15 (2.7) 

requiring that isospin, hypercherge and charm be conserved. The symmetry 

of H: and therefore, of H will be determined by the values of the parameters 

ci (i = 0, 8, 15). 

In terms of the quark model 

H’ = m iiu+m?id+msSs+mcCc 
U d 

and the quark masses, by which we mean simply the parameters mi in 

Eq. (2.8), are related to the constants ci as follows: 

m = 
U 

& co + kc8 ++‘I5 
=m 

d 

m 
S 

= &co- &S +h5 

m 
C 

= &co +ci5 . 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

A complete overview of the hierarchies of symmetry breaking is shown in Figure 1 

wnicn iilusrrares all tne possibie clitferent intermediate unbroken subgroups 

between the largest symmetry case, W(4) x W(4), and the smallest 



-a- FERMILAB-Pub-77/ 78-THY 

symmetry, SU(Zjd x SU(1 jd x UC1 jd (the superscript d denotes diagonal), 

allowed for H’of the above form Eq. (2.7). 

It is instructive to follow Michel and Radicati’s approach’ and recognize 

in this simple classification in which cases H’is on a critical orbit in 

the space of the representation (4, q)@ (4, 4). Indeed these authors have 

noticed that the directions of breaking of the hadronic internal symmetry 

have in general special mathematical properties. More precisely, these 

directions can be related to idempotents or nilpotents of an algebra, and 

they are critical; namely, every function invariant under the action of 

the symmetry group has an extremum in these directions. We have 

summarized in Appendix A the essential mathematical definitions. 

As an example, let US recall that in the framework of the chiral 

group SU(3) x SU(3) there are in the quotient space Et7 = Ei8/R - ( 0 \ 

critical orbits admitting as a little group, or invariance group, SU(3)d 

and SU(2) x SUG’) x U(1 jd. This latter group corresponds to the massless 

pion case in the (3,3) ~(?,3) model.4’5. Using the notations of Michel and 

Xadicati H’ in this model can oe wrirren m me ~orrn~ 

H’ a (fi - 0.058b + 0.058hi7 n 

where y and n are respectively the directions belonging to the 

SU(2) x SU(2) x U(ijd and SU(3jd critical orbits. That is, 

(2.12) 

y = -&I-$ (2.13) 
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and 

(2.14) 

Notice that in this model HZ is approximately in the direction of y. 

In the case of chiral SU(4) X SU(4) two critical orbits have previously been fou 

by Mott’in the quotient space E31 = E32/R - { 01, the little groups of which 

are SU(3) x SU(3) x U(lJd and SU(2) x SU(2) x U(2jd. Representative 

elements of each of these orbits are 

r 

and 

0 
0 

s = i ) 1 
1 

(2.16) 

It is interesting to notice that the kaon PCAC problem which is 

considered below corresponds exactly to the case Eq. 2.15 for which the 

symmetry group of H’is then SU(3) x SU(3) x U(ijd. 

(2.15) 
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III. MESON COUPLING CONSTANTS AND QUARK MASSES 

Next we proceed to obtain relations among masses and meson 

coupling constants. From the symmetry breaking hamiltonian H’ 

one can readily compute the divergences of the axial vector currents in 

terms of the operators vi and the quark masses from the relation 

aAj = -i Fi, H’ c 1 
One then finds that these axial current divergences have the following 

matrix elements between the vacuum and the various pseudoscalar meson 

states: 

<O18AVIr> = Mrr2Frr = m<O/v.,,In> 

<Ol 8AK IK> = MK2FK = +(m +ms)<OlvKIK> 

<01 aAD ID> = MD’FD = $(m +mc)<OIvDID> 

CO 1 aAF IF> = MF2FF = 4 (ms + mc)<O 1 vF IF> 

where m = m 
U 

= md and the coupling constants Fi are determined by the 

leptonic widths of the pseudoscalar mesons: e.g., Fir = 0.94 M . 
TT 

Solving these equations for the ratios of quark masses yields 

m 
s= 2 
m 

(3.1) 

(3. 2) 

(3.3) 

(3.4) 

(3.5) 

(3. 6) 
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m 
cz2 MDZFD <O lvD/ D> 

m M 2F <o -i 
TT T 

and 

ms +m c 2MF F 
‘F CO IvF IF> 

= 
m M2F .-zT/gT ’ 

TI lT 

Assuming only that the pseudoscalar meson states are SU(3) symmetric 

one then finds the well known result 

m M 2F 
2 = 2 K K -1=: 30 
m Mri2F ll 

where we have taken FK/Fr = 1.25. Furthermore, since the F and D 

belong to the same SU(3) triplet we have the relation 

FD MF 
2 

MF 
2 

-=2 
FF MD 

<--I.19 

MD 
2 

,where we have used the values IO MD+ = 1868 MeV and MF = 2040 MeV in obtaining 

the numerical result. We emphasize that the inequality Eq. (3.10) follows only from 

the SU(3) symmetry of the states and is independent of their SU(4) ourity. (Note 

also that the derivation is free of any assumptions about soft-meson limits.) Clearly 

it is very important to test Eq. (3.10) experimentally. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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However, if we do further assume that the oseudoscalar mesons belone 

purely to the 15 of SU(4) then we obtain two additional relations: 

2 
m 
c =2 lLIDFD -~ 
m Mr2F lT 

2 
MF FF 

2 
- MD FD = % ‘FK - Mr2F TI 

To obtain a very crude numerical estimate of the rd.tio m,c/m one might 

take” Fs 3 FK s FD 3 FF Then, from Eq. (3.11) one finds 

m 
c Q 2 - 360 
m 

However, Eq. (3.12) is in very poor agreement with the data sinceIl 

IM F2 - MD2 2 (825 MeV/c2) = 0.683 (GeV/c2j2 

(3. ii) 

(3.12) 

(3.13) 

(3.14a) 

while 

MK2- MT2 = (475 MeV/c2j2 = 0.225 (GeV/c2j2 (3.14b) 

Consequently, the validity of (3.13) is doubtful. 

However, we emphasize that this estimate of the ratio me/m is only very 

crude. It is quite possible that while F, * FK and F DSF F, which follow from 
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only approximate W(3), that F /F D II 1s not at all close to unity. For example, if 

one writes Eq. (3.12) in the form 

FD -= 
F Tr 

(3.15) 

and takes FK/F TT = 1.25 , FF/FD = 1 and MF = 2040 MeV then one obtains 

FD/F TT Q 0.4 and me/m rr 150. It is important to note that me/m is 

very sensitive to FD/ FTI which in turn is very sensitive to MF ‘(F,/ FD). 

Clearly firm data are required to check Eq. (3.12) and to obtain me/m 

from Eq. (3. ii) since phenomenological estimates differ. For example, 

Preparata 
12 

finds FD/F iT = 1. 1 in his geometrodynamical model of hadronic 

matter while Quigg and Rosner 
13 

estimate FD/ FTI = 0.3 in their phase 

space model. 

So far we have only discussed ratios of quark masses. Leutwyler 14 

has found that m = 5.4 MeV and ms = 125 to 150 MeV. Using our 

estimate ms/m = 30 [Eq. (3.9)1 and taking m = 5.4 MeV we find ms 2 160 

MeV in reasonable agreement. Assuming me/m S 360 (Eq. 3.13), which is of 

doubtful validity, one finds mc z 1940 MeV/c2. However, the estimate 

me/m *150, which follows from Eq. (3.15) and is probably more reliable, gives 

mc s 810 MeV/c*. 

While our estimates of mo are rather crude the imports& conclusion 

is that mc >> ms >> m in which case there is a regime of phenomena 

involving charmed particles for which chiral SU(3) x SU(3) is a useful 

approximate symmetry of the hamiltonian. 
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IV. KAON PCAC 

We consider next the possibility that for certain processes one 

can obtain soft kaon theorems. In the breaking of chiral SU(4) x SU(4) 

if the subgroup chiral SU(3) x SU(3) remains sn approximate symmetry by 

virtue of the kaon mass being small compared to any other masses 

involved then one expects kaon PCAC to be valid. Specifically we have 

in mind processes where the errors in taking the soft kaon limit are 

expected to be of the order of, for example, (MK/MD)’ or (MK/MF) 
2 

; 

or in terms of quarks ms/mc which is small. 

The situation is entirely analogous to the familiar case in which 

chiral SU(3) x SU(3) is broken leaving the subgroup chiral SU(2) x SU(2) 

as an approximate symmetry of the hamiltonian due to the relative 

smallness of the pion mass. As is well known for processes in which the 

limit M ll -f 0 is smooth one can use pion PCAC to derive soft pion theorems 

valid to the order of, for example, (MT/MKj2. 

To illustrate the case of SU(4) x SU(4) breaking in which an approximate 

SU(3) x SU(3 ) invariance of the hamiltonian remains useful by virtue 

of the relative smallness of the kaon mass we consider as an example the 

processes 

D+-I? +!++vp 

and 

D”+K-+,++“e . 
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The hadronic part of the Dp 3 matrix element is of the form 

<K(q) [VP [D(p)> = f+(P +q)p’f (p -4) . 
k 

Using kaon PCAC a standard current algebra calculation immediately 

gives the analogue of the Callan-Treiman relation: 

f, +f = FD/FK . 

Corrections to this result should be small, of order (M /M 1’ K, D, , SW+ therefore 

testing it experimentally is particularly important. 

Clearly there are also a number of other processes involving charmed 

particles for which soft kaon theorems can be obtained using kaon PCAC and 

standard current algebra techniques. 
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APPENDIX: CRITICAL ORBITS ON A WNIFOLD 

Here we recall some definitions and properties helpful in understanding 

Section II. More details will be found in the original work of Michel 

and Radicati. 
6 

Let us consider the 32 dimensional space E32 of the (4, z) + (z, 4) 

representation of the compact group G = SU(4) x SU(4). Each H’defined 

by Eq. (2.7) is a point of this manifold. Such a point H’, or M, is on 

the orbit G(Mki. e., the set of all points transformed by G from M. 

Moreover the set of transformations g E G which leave M invariant is 

called the little group gM of M. It is easy to prove that all points on 

the same orbit have conjugated little groups; i. e., G 
-1 

gM=gGMg . 

Finally, the set of all points of E32 with conjugated little groups is called 

a stratum; in other words, the stratum S(M) is the union of all orbits such 

that the little groups of their points are all conjugated. 

The following theorem has been proved by Michel: 
15 

Theorem: Let G be a compact lie group acting smoothly (i. e., in 

an infinitely differentiable way) on the real manifold A, and let M E A. 

The two properties (a) and (b) are equivalent: 

(a) The orbit G(M) is critical; i. e., the differential dfM, of every 

smooth real G-invariant function f on &c? vanishes for M’ E G(M). 

(b) Theorbit G(M) is isolated in its stratum; i.e., there exists 

a neighborhood VM of M such that if p 1 G(M), p E VM, then Gp is not 

conjugated to GM. 
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FIGURE CAPTION 

The possible ways in which SU(4) x SU(4) can be broken leaving an 

exact subgroup are shown. Each unbroken subgroup corresponds to 

H’being on a critical orbit and the relevant values of the parameters ci 

are indicated. For each case the form of H’is given in the context of 

the quark model ,to illustrate the structure of the corresponding quark 

mass matrix. 
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